New functions for parts of the Krebs cycle in procyclic Trypanosoma brucei, a cycle not operating as a cycle.
نویسندگان
چکیده
We investigated whether substrate availability influences the type of energy metabolism in procyclic Trypanosoma brucei. We show that absence of glycolytic substrates (glucose and glycerol) does not induce a shift from a fermentative metabolism to complete oxidation of substrates. We also show that glucose (and even glycolysis) is not essential for normal functioning and proliferation of pleomorphic procyclic T. brucei cells. Furthermore, absence of glucose did not result in increased degradation of amino acids. Variations in availability of glucose and glycerol did result, however, in adaptations in metabolism in such a way that the glycosome was always in redox balance. We argue that it is likely that, in procyclic cells, phosphoglycerate kinase is located not only in the cytosol, but also inside glycosomes, as otherwise an ATP deficit would occur in this organelle. We demonstrate that procyclic T. brucei uses parts of the Krebs cycle for purposes other than complete degradation of mitochondrial substrates. We suggest that citrate synthase plus pyruvate dehydrogenase and malate dehydrogenase are used to transport acetyl-CoA units from the mitochondrion to the cytosol for the biosynthesis of fatty acids, a process we show to occur in proliferating procyclic cells. The part of the Krebs cycle consisting of alpha-ketoglutarate dehydrogenase and succinyl-CoA synthetase was used for the degradation of proline and glutamate to succinate. We also demonstrate that the subsequent enzymes of the Krebs cycle, succinate dehydrogenase and fumarase, are most likely used for conversion of succinate into malate, which can then be used in gluconeogenesis.
منابع مشابه
Apocytochrome b and other mitochondrial DNA sequences are differentially expressed during the life cycle of Trypanosoma brucei.
Cytochromes and Krebs cycle enzymes are not detected in bloodstream forms of Trypanosoma brucei but are present in procyclic forms. We have analyzed transcription of mitochondrial sequences which contain the apocytochrome b gene and several other open reading frames (ORFs). Multiple transcripts map to individual DNA sequences located on both DNA strands. Larger low abundance transcripts map to ...
متن کاملThe krebs cycle enzyme α-ketoglutarate decarboxylase is an essential glycosomal protein in bloodstream African trypanosomes.
α-Ketoglutarate decarboxylase (α-KDE1) is a Krebs cycle enzyme found in the mitochondrion of the procyclic form (PF) of Trypanosoma brucei. The bloodstream form (BF) of T. brucei lacks a functional Krebs cycle and relies exclusively on glycolysis for ATP production. Despite the lack of a functional Krebs cycle, α-KDE1 was expressed in BF T. brucei and RNA interference knockdown of α-KDE1 mRNA r...
متن کاملAdaptations in the glucose metabolism of procyclic Trypanosoma brucei isolates from tsetse flies and during differentiation of bloodstream forms.
Procyclic forms of Trypanosoma brucei isolated from the midguts of infected tsetse flies, or freshly transformed from a strain that is close to field isolates, do not use a complete Krebs cycle. Furthermore, short stumpy bloodstream forms produce acetate and are apparently metabolically preadapted to adequate functioning in the tsetse fly.
متن کاملThe extraordinary mitochondrion and unusual citric acid cycle in Trypanosoma brucei.
African trypanosomes are parasitic protozoa that cause sleeping sickness and nagana. Trypanosomes are not only of scientific interest because of their clinical importance, but also because these protozoa contain several very unusual biological features, such as their specially adapted mitochondrion and the compartmentalization of glycolytic enzymes in glycosomes. The energy metabolism of Trypan...
متن کاملTelomere shortening and cell cycle arrest in Trypanosoma brucei expressing human telomeric repeat factor TRF1.
Trypanosoma brucei has telomeres composed of 15 kb tracts of TTAGGG repeats that end in 3' overhangs and form t-loops. This structure is also present in mammalian cells and is thought to reflect the presence of telomere-binding proteins. The human TTAGGG repeat-binding factor TRF1 binds to telomeres and regulates their length. We attempted to interfere with the normal function of trypanosome te...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 280 13 شماره
صفحات -
تاریخ انتشار 2005